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Abstract. The Bak-Tang-Wiesenfeld (BTW) sandpile model is a cellular automaton which has been inten-
sively studied during the last years as a paradigm for self-organized criticality. In this paper, we reconsider
a deterministic version of the BTW model introduced by Wiesenfeld, Theiler and McNamara, where sand
grains are added always to one fixed site on the square lattice. Using the Abelian sandpile formalism we
discuss the static properties of the system. We present numerical evidence that the deterministic model is
only in the BTW universality class if the initial conditions and the geometric form of the boundaries do
not respect the full symmetry of the square lattice.

PACS. 64.60.Ht Dynamic critical phenomena – 05.65.+b Self-organized systems – 05.40.-a Fluctuation
phenomena, random processes, noise, and Brownian motion

1 Introduction

In equilibrium systems with short-ranged interactions and
no broken continuous symmetry, correlation functions
usually decay exponentially with the distance. Exceptions
from this behavior occur only in special cases, for example
at critical points in a phase diagram. In this case the cor-
responding correlation functions decay algebraically if the
relevant system parameter is adjusted to special (critical)
values (e.g. critical temperature, critical pressure, etc.).

The concept of self-organized criticality (SOC) which
was introduced by Bak, Tang and Wiesenfeld in 1987 [1,2]
attempts to explain the fact that in nature critical behav-
ior is often observed, although nature cannot “fine-tune
parameters” (see [3,4] for an introduction and overview).
The term “critical behavior” corresponds here to a power-
law behavior of the probability distributions of certain
physical quantities which characterize the system in both
space and time [1,2]. Typical examples for such quanti-
ties are the size and life times of catastrophic events. The
main idea is then that the critical state is an attractor of
the dynamics.

One of the paradigmatic systems which exhibit SOC
is the Bak-Tang-Wiesenfeld sandpile model (BTW model)
which was intensively investigated in the past. In the
following, we restrict our discussion to the BTW model
on the two-dimensional square lattice. Concerning static
properties, analytical results exist which are mainly due
to Dhar, who developed a formalism for Abelian sandpile
models [6] which allows to calculate exactly the height
probabilities, height correlations, number of steady state
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configurations, etc. [6–9]. However, much less is known rig-
orously about the dynamical features, and estimates for
the exponents of the probability distributions of avalanche
quantities are only known from computer simulations (see
for instance [10–15]); further guesses for these exponents
have been made via renormalization group approaches
(e.g. [16,17]).

In this paper we consider a deterministic version of
the BTW model which was introduced by Wiesenfeld
et al. [18]. In the original BTW model, sand grains are
added at randomly chosen sites of the lattice. In the de-
terministic BTW model (DBTW) the seeding of sand is
confined to one special site of the lattice. Computer simu-
lations revealed [18] that the DBTW model still displays
criticality. Therefore, randomness in the location of the
perturbations is not a necessary ingredient for SOC [18].
Furthermore, the authors concluded from their numeri-
cal analysis that the different versions of the BTW model
could display different scaling behavior.

However, this conclusion was obtained from an inves-
tigation of the DBTW model for a small system size. As
finite-size effects have been shown to affect the scaling
behavior of the BTW model strongly [11,12], we reinves-
tigate the case here and present a systematic finite-size
analysis. We also present some new exact results for the
DBTW model.

The paper is organized as follows. In Section 2, we
define the model and, using essentially the formalism de-
veloped by Dhar [6], study the static properties of the
DBTW. In Section 3, we present our results from com-
puter simulations and then discuss the observed scaling
behavior in the context of the universality hypothesis of
Ben-Hur and Biham [19]. A summary closes the paper.
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2 Definition of the model and static
properties

The BTW model on a two-dimensional square lattice of
size L × L is defined as follows. To each site i (i =
1, 2, . . . , L2) an integer variable zi (the height) is assigned.
Starting with an empty lattice (zi = 0 for all i) the addi-
tion of a grain of sand means to choose a site i at random
and to increase zi by 1. If zi is equal to a fixed threshold
value zc, site i topples and distributes one grain of sand
to each nearest neighbor, which can in turn trigger more
toppling events. Thus, an avalanche of relaxation events
may take place. For the sake of simplicity (and without
loss of generality) we set zc = 4 throughout this work.
The toppling rules can be formulated in terms of a N ×N
toppling matrix ∆ [6], where N = L2. If site i topples,
one has

zj −→ zj −∆ij (1)

for all j = 1, 2, ..., N , where the toppling matrix satisfies
the conditions ∆ii = 4, ∆ij = −1 if i and j are nearest
neighbors, and ∆ij = 0 otherwise. Sand falling over the
rim of the system is discarded.

In the following we briefly describe the Abelian sand-
pile formalism which was introduced by Dhar [6] and recall
the major results. Dhar showed that the dynamics of the
BTW model is well-defined in the sense that the resulting
stable configuration C = {zi} is always the same, regard-
less of the order, in which critical sites are updated during
an avalanche. One can define an operator ai by its action
onto a stable configuration C: aiC is the stable configu-
ration which results from adding a particle at site i and
relaxing the resulting configuration. Dhar showed that

[ai, aj ] = 0, (2)

for all i, j. Therefore, the BTW model is called an Abelian
sandpile model [6].

One is interested in the stationary state of this cellu-
lar automaton, i.e., one iterates the dynamical rules until
all expectation values become time independent. Since the
dynamics can be described as a Markovian process a sta-
ble configuration can either be transient or recurrent. A
recurrent configuration C can be defined by demanding
that for every possible seeding site i a natural number
mi(C) exists such that ami(C)

i C = C holds. Thus, for a
recurrent configuration C and for a natural number l one
gets [6]

aliC = alia
mi(C)
i C = a

mi(C)
i aliC, (3)

which shows that aliC is a recurrent configuration, too.
Therefore, the set of recurrent configurations is closed un-
der the action of the operators ai [6]. Since it is possible to
define unique, inverse operators a−1

i , it follows that each
recurrent configuration has the same probability to appear
in the stationary state. One can further prove that the
number of recurrent configurations is equal to det∆ [6].

A two point correlation function Gij can be defined
in the following way: let Gij be the expectation value for
the number of topplings in j, which are caused by adding
a particle at site i. In the stationary state, the average
number of particles which enter site j must be equal to
the average of sand grains leaving site j:

Gij∆jj =
∑
k 6=j

Gik(−∆kj) + δij , (4)

which implies G = ∆−1 [6]. The analytic expression for G
is well-known:

Gij = ∆−1
ij =

1

(L+ 1)2

L∑
a,b=1

sinxiã sinxj ã sin yib̃ sin yj b̃

sin2 ã
2 + sin2 b̃

2

,

(5)

with ã = aπ/(L+ 1), b̃ = bπ/(L+ 1) and where the sites i
and j have the coordinates (xi, yi) and (xj , yj), respec-
tively. Let s denote the size of an avalanche, i.e., the
total number of topplings during that avalanche. Using
equation (5) it can be shown that the average number of
topplings 〈s〉 is given by

〈s〉 =
1
L2

∑
i,j

Gij =
1

L2(L+ 1)2

L∑
a,b
odd

cot2 ã
2 cot2 b̃

2

sin2 ã
2 + sin2 b̃

2

(6)

which scales for large L as [6]

〈s〉 ∼ L2. (7)

Let us now turn to the deterministic BTW model
(DBTW) as introduced by Wiesenfeld, Theiler, and
McNamara [18]. Here, sand is always added at a fixed in-
put site i0. Thus, the dynamics is fully deterministic and
it is clear that in the configuration space (recurrent con-
figurations) a DBTW model will settle down in an orbit
with some period T , which in general will depend on i0.
For example, the period of a DBTW model with a seeding
site at the corner of the lattice is larger than the period of
the center-seeded DBTW model, as it is intuitively clear
and also known from computer simulations. An analytical
approach [20] was used to evaluate T for the center-seeded
DBTW model up to a system of N = 361 sites, where the
authors found a period of length ≈ 1017 and extrapolated
their results to reproduce the numerical estimation of [18]
T ∼ exp (0.11N).

In [18], several interesting features of the DBTW
model could be derived by using the Abelian sandpile for-
malism:

(i) the orbits have the same period (for a fixed input site
i0), regardless of the initial conditions;

(ii) the minimal stable configuration C∗ = {zi = zc −
1, for all i} is always on an orbit of the DBTW model.

Note that (ii) does not mean that a DBTW model will
always reach C∗ at some point. For example, for the ini-
tial condition zi = 1 for all i a system of 49 sites has
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an orbit without C∗. Only for different initial conditions
or a different system size (e.g. 25 sites with the same initial
condition) C∗ is on the orbit.

Let us now define Ni0j as the total number of topplings
at site j within the period T of a DBTW model with input
site i0. The time average of Ni0j is simply Ni0j/T . The
total flow of particles during T into j has to equal the
flow out of j and it follows Ni0j/T = ∆−1

i0j
or

∆−1
i0j

= Gi0j = Ni0j/T. (8)

This means that every “row” i of the BTW correla-
tion function Gij , which stands for the ensemble-averaged
number of topplings in j when seeding in i, represents the
time average of topplings in j of a DBTW model with a
fixed input site i0. The average avalanche size 〈s〉 for the
BTW model can therefore be thought of as 〈si0〉 of the
DBTW models averaged over all orbits and all possible
seeding sites i0 = 1, 2, ..., N .

Similar to the BTW model it is possible to calculate
the average number of topplings 〈s〉 for the center-seeded
DBTW model on a square lattice with length L (L odd).
Using equation (5) we get with xi0 = yi0 = (L+ 1)/2

〈s〉 =
∑
j

Gi0j =
1

(L+ 1)2

L−1
2∑

a,b=0

(−1)a+b cot Ã2 cot B̃2
sin2 Ã

2 + sin2 B̃
2

(9)

with Ã = (2a + 1)π/(L+ 1) and B̃ = (2a + 1)π/(L+ 1),
respectively. It is straightforward (though tedious) to eval-
uate this expression for large L by using standard meth-
ods. One obtains 〈s〉 ∼ L2, analogous to the BTW model.
It is also easy to get an expression for the time-averaged
number of topplings Ni0i0/T of the input site i0:

Ni0i0
T

= Gi0i0 =
1

(L+ 1)2

L−1
2∑

a,b=0

1

sin2 Ã
2 + sin2 B̃

2

(10)

which can be shown, again using elementary methods, to
scale as Ni0i0

T ∼ lnL for large L.

3 Dynamics

3.1 Characterization of the avalanches

For a graphical representation of the avalanches, it is con-
venient to denote how many topplings n at each site have
occurred during the avalanche [10]. Sites with the same
number of topplings (during one avalanche) form “shells”.
It is easy to check that for each site i inside such a shell,
for which all four neighbors are also part of the shell, the
height zi before and after the avalanche remains the same.
Figure 1 shows some examples which have been obtained
in the stationary state of the central seeded DBTW. The
shells seem to form compact sets with n monotonically
decreasing from the central site towards the boundaries
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Fig. 1. Three different avalanches for the center-seeded
DBTW model. Sites which toppled once are marked as A, twice
toppled sites as B, etc.

along the symmetry axis. Also, it seems that at the bound-
ary of each n = const shell, n will change only by 1 (es-
pecially at the boundary of the avalanche one finds n = 1
most often). However, the latter statement is not always
correct, there are rare exceptions. For instance, the up-
per left cluster in Figure 1 has a boundary site which has
toppled twice and the lower cluster has sites with n = 1
adjacent to a site with n = 3. We could only prove two
properties of the avalanches. First, it has been shown for
the BTW model, and the proof applies for the DBTW
model also, that avalanches are always compact [10,21].
Second, one can show that n decreases monotonically from
the center towards the boundaries along the symmetry
axis by decomposing an avalanche into a series of waves
of topplings [22,23]. First one topples the center site and
relaxes all other sites which become unstable. This defines
the first wave of topplings. After this, one allows the center
site to relax again (if possible) which generates a second
wave of topplings and so forth. It has been shown [22]
that each avalanche produced by such a wave of topplings
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is compact. Furthermore, each site in a wave can topple
only once. Thus, by superposition of the compact waves
of topplings, n can only monotonically decrease from the
center towards the boundaries along the symmetry axis.

3.2 Scaling behavior of the avalanches

In driven systems the boundary conditions can influence
the stationary state [24]. We show below that the scaling
properties of the BTW model and its deterministic version
are only the same if the latter has boundary conditions or
an initial configuration which do not respect the square
symmetry.

We denote by s the total number of topplings which
occurred during the lifetime t (in units of lattice sweeps)
of an avalanche. The area a of such an avalanche is the
number of distinct toppled sites. The outflow o is the to-
tal number of sand grains which leave the system during
an avalanche. The linear size of an avalanche is measured
via the radius of gyration of an avalanche cluster. In the
critical steady state the corresponding probability distri-
butions should obey a power-law behavior

Px(x) ∼ x−τx , (11)

characterized by the exponent τx with x ∈ {s, a, t, o, r}. As
usual, we measure the avalanche distributions by counting
the numbers of avalanches corresponding to a given area,
duration, etc. and integrate these numbers over bins of
increasing length (see for instance [25]). In our simulations
successive bin lengths increase by a factor b = 1.2. In the
case of the BTW model it is known that the probability
distributions display logarithmic corrections

Px(x) ∼ x−τx xconst/ lnL, (12)

which are caused by finite-size effects [11,12]. A numerical
determination of the avalanche exponents requires there-
fore a careful analysis of finite-size effects. Using the func-
tional form of the finite-size corrections it is possible to
determine the exponents τx directly, i.e. without any ex-
trapolation to the infinite system, and the best known
values are τs = 1.293 ± 0.009, τa = 1.33 ± 0.011, τt =
1.480± 0.011, and τr = 1.665± 0.013 [12].

We performed simulations of the center-seeded DBTW
model for various system sizes L ≤ 2049 and averaged
all measurements over at least 2× 106 avalanches. Start-
ing from an empty lattice, we added particles at the lat-
tice center and applied the “burning algorithm” in order
to check if the system has reached the steady state [6].
Thus the initial conditions (as well as the boundary con-
ditions) respect the square symmetry. Figure 2 shows the
probability distribution Pt(t) of the avalanche duration.
Surprisingly, it turns out that the above mentioned loga-
rithmically averaging method is not suitable in our case,
because avalanches of odd or even duration display a
different scaling behavior. The two branches of Pt(t) in
Figure 2 (τodd

t and τeven
t ) clearly have different slopes for

the system size considered. The probability distribution
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Fig. 2. The probability distribution of the avalanche dura-
tion Pt(t). Avalanches of an even or odd duration display a
different scaling behavior. Thus, the usual logarithmic averag-
ing of the distribution leads to useless results (solid line).
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Fig. 3. The probability distribution of the avalanche dura-
tion Ps(s). The distribution decomposes into four different
branches corresponding to the four possible values of smod 4.

of the avalanche size Ps(s) exhibits an even more compli-
cated fine structure of four distinct branches correspond-
ing to the four possible values of smod 4 (see Fig. 3). We
have no explanation for this behavior.

Let us briefly remark that a similar symmetry effect
can be found in the outflow probability distribution Po(o).
One gets different curves for all o which are divisible by 8
and those which are not (see Fig. 4). To explain this, we
note that the outflow o is divisible by 8 exactly when the
sites in the middle of the boundary edges do not topple.
This is extremely unlikely for large avalanches. On the
other hand, for small avalanches, the constraint to topple
sites in the middle of the boundary edges considerably
reduces the number of possible avalanches.
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Fig. 4. The probability distribution of the sand outflow Po(o)
for L = 129. The distribution decomposes into two different
branches corresponding to the two possible values of omod 8.
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Fig. 5. System size dependence of the avalanche exponents τa
and τr. The solid lines corresponds to the values obtained from
a finite-size scaling analysis and the dashed lines corresponds
to the values of the BTW model obtained in [12].

Since the exponents of the size and duration distri-
bution, τs and τt, are not well-defined here we renounce
further investigations of the size and duration distribution
in this section and focus our attention on the probability
distributions of the avalanche area and radius which be-
have as usual (see below). We measured the probability
distributions Pa(a) and Pr(r) for various system sizes and
obtained the corresponding exponents from a power-law
fit of the straight portion of the curves. The values of both
exponents are plotted in Figure 5. In contrast to the BTW
model (Eq. (12)) the avalanche exponents of the center-
seeded DBTW model display no significant system size
dependence. This allows us to apply the finite-size scaling
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Fig. 6. The finite-size scaling analysis of the avalanche distri-
bution Pr(r). Since the radius scales with the system size the
exponent νr should equal one.

analysis [26]

Px(x, L) = L−βxgx(xL−νx), (13)

where the scaling exponents βx and νx are connected
with the avalanche exponent τx via the scaling equation
βx = τxνx [26]. This finite-size scaling ansatz works for
the area and radius distribution and the corresponding
data collapse for Pr(r) is plotted in Figure 6. The ob-
tained values for the avalanche exponents agree with the
results of the regression analysis (see Fig. 5) and we get
τa = 1.368± 0.011 and τr = 1.752± 0.027.

As already mentioned in Section 3.1, it is possible to
show that the avalanches are compact. Thus, the area
scales with the radius as

a ∼ r2. (14)

Then, the transformation law of probability distributions
Pa(a)da = Pr(r)dr leads to the scaling relation

2 =
τr − 1
τa − 1

· (15)

This scaling relation is fulfilled within the error-bars,
which confirms the accuracy of the determination of the
avalanche exponents τa and τr. Finally we mention that
our obtained exponents are consistent with the values
τa = 11/8 and τt = 7/4 and that these values obey the
above scaling relation exactly.

4 Discussion

Since both avalanche exponents differ significantly from
those of the BTW model we conclude that the center-
seeded DBTW model does not belong to the BTW uni-
versality class. It is worth to examine the different univer-
sal behavior in detail since the universality hypothesis of
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Fig. 7. The probability distribution Ps(s) of the symmetric
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(in one case the square symmetry is broken by the boundaries
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the BTW model for L = 257. In the latter cases the curves are
shifted in the downward direction.

Ben-Hur and Biham states that the only parameter which
determines the scaling behavior (exponents) of a sandpile
model is the so-called relaxation vector which describes
how the sand grains of a critical site are distributed to
the next neighbors [19]. Applying this concept of classifi-
cation one can identify three universality classes where the
distribution is nondirected, nondirected on average, and
directed. For instance, the BTW and the related Zhang
model [27] belong to the universality class of nondirected
models, whereas the Manna model [25] is nondirected on
average and therefore belongs to a different class. Sev-
eral numerical investigations confirm these classification
ansatz (see for instance [12,19,28] and for recent investi-
gations [29,30]).

According to this classification concept the center-
seeded DBTW model and the BTW model should belong
to the same universality class because both models are
characterized by the same relaxation vector. In contrast
to the BTW model the center-seeded DBTW model is de-
terministic and both the avalanches and the height config-
urations display the square symmetry. Moving the input
site i0 from the lattice center brakes the square symme-
try but the dynamics of the system is still deterministic.
The same effect is obtained if we use center-seeding but
start with an asymmetric initial condition. We call these
models the asymmetric DBTW models and our analysis
revealed that they display the same scaling behavior as
the usual BTW model. We plot the probability distribu-
tion Ps(s) for the considered models in Figure 7. Except
of deviations at the cut-off, the probability distributions
of the asymmetric DBTW models agree with the corre-
sponding curve of the BTW model and differ clearly from
the distribution of the symmetric DBTW model. Figure 8
shows the probability distribution for various system sizes.
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Fig. 8. The probability distribution Ps(s) of the two asym-
metric DBTW models and the BTW model for various system
sizes. For L < 513 the curves are shifted in the downward
direction.

Again, apart from the cut-off behavior the curves of the
BTW model and the asymmetric DBTW models are iden-
tical. This implies that the avalanche exponents of the
asymmetric DBTW models display the same logarithmic
corrections as the BTW model (Eq. (12)).

We conclude from our investigations that the asym-
metric DBTW and the BTW model belong to the
same universality class, whereas the center-seeded DBTW
model with symmetric initial height configuration does
not. Since the asymmetric DBTW model is still determin-
istic but lacks the square symmetry the different universal
behavior of the center-seeded DBTW model is not caused
by the deterministic dynamics but by the square symme-
try of the system (in agreement with [18]).

We conclude from our results that properties of the
steady state such as symmetries or translational invari-
ance can affect the universality class of sandpile models.
This is confirmed by recently performed simulations [31]
of a directed version of the Zhang model which exhibits
a different scaling behavior than the exactly solved di-
rected BTW model [32]. According to the classification
of Ben-Hur and Biham the directed Zhang model and the
directed BTW model should belong to the same universal-
ity class. But in contrast to the directed BTW model the
height configuration of the directed Zhang model displays
no translation invariance [31]. Similar to the center-seeded
DBTW model one has to be careful to apply the univer-
sality hypothesis of Ben-Hur and Biham.

In summary we reconsidered a deterministic version of
the Bak-Tang-Wiesenfeld sandpile model where the sand
grains are added always to the central site of the lattice.
Similar to the usual BTW model the Abelian sandpile for-
malism allows to calculate some of the static properties
of the system. Our numerical investigations show that the
deterministic central-seeded model with square symmetric
initial conditions exhibits a different scaling behavior than
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the BTW model, in contrast to the deterministic model
without square symmetry.
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